WIMP SEARCHES WITH THE AMANDA DETECTOR: RESULTS AND PERSPECTIVES

Carlos de los Heros

Uppsala University
(for the AMANDA collaboration)

- The AMANDA detector
- Signal simulation
- Results from AMANDA-B10 (1997 data)
- Something about AMANDA-II (2000 data)
- The (not so far) future: IceCube

The AMANDA collaboration (in short):

AMANDA-B10 (1997):

cylinder of 500m. H x 120m. D 10 strings 302 Oms

AMANDA-II (2000):

cylinder of 500m. H x 200m. D 19 strings (3 of them instrumented over 1-km. for ice studies) 677 OMs

WIMP (χ) CAPTURE

SIGNAL SIMULATION I: PARTICLE PHYSICS INGREDIENTS

One sets limits to what one simulates!

MSSM with 7 parameters

```
Higgsino mass parameter m [-50000,50000] GeV Gaugino mass parameter M_2 [-50000,50000] GeV Ratio of Higgs VEV, tanb [1,60] mass of CP-odd Higgs, m_A [0,10000] GeV Scalar mass parameter m_0 [100,30000] GeV SUSY breaking parameters, A_b and A_t [-3,3] on A_i/m_0
```

No restrictions from supergravity

except for gaugino mass unification at GUT scale

Parameter space scanned and models already rejected by accelerator searches discarded

SIGNAL SIMULATION II: COSMOLOGY and YET MORE PARTICLE PHYSICS INGREDIENTS

- For each model, the neutralino relic density, $\Omega_{\gamma} h^2$, is calculated and only models with $0.025 < \Omega_{\gamma} h^2 < 1$ are kept
- A galactic DM density of 0.3 GeV/cm³ and a DM velocity dispersion of 270 km/s have been assumed
- Annihilations into $\chi\chi$ 1 cc, bb, tt, $\tau\tau$, WW, ZZ were considered for 6 neutralino masses: 100GeV, 250GeV, 500GeV, 1000GeV, 3000GeV and 5000 GeV
- Hadronization and decay of the resulting products simulated with **PYTHIA**
- The resulting muon is tracked including energy losses until it decays or passes the detector

WIMPS FROM THE EARTH IN AMANDA-B10: RESULTS

Backgroud to this search: atmospheric neutrinos

Main handle: angular distribution

Analysis strategy:

Unstable runs, X-talk and noise hit cleaning

Fast (line) fit and loose zenith angle cut (>70°)

Likelihood reconstruction with use of photon scattering probabilities in ice

Further cuts based on:

Sphericity of hit distributions

Track length

Number of hits due to unscattered photons

Number of hit channels

Summed hit probability of the hit modules

z-component of the center of gravity of hits

Event time flow

Mass-dependent final angular cuts as to contain 90% of a possible WIMP signal

Challenge

Achieve a
rejection factor
of ~10⁸ due to
the presence of a
strong
atmospheric
muon
background

Sensitivity to signal given g 108 by

$$V_{eff} = N_{finalcut}/N_{gen} \times V_{gen}$$

Observable quantity

$$\Gamma_{\nu\mu} = \text{N}_{90}/\text{V}_{\text{eff}} \; \text{t}$$

From $\Gamma_{\nu\mu}$ to Φ_{μ} at any threshold and angular region

AMANDA-B10 limit on the muon flux from the center of the Earth compared with current indirect limits (Phys. Rev. D66, 032006)

AMANDA curves include the effects of systematic uncertainties in N_{90}

WIMPS FROM THE EARTH: AMANDA-II

Running since 2000

- 1.3 x 10⁹ events collected in 2000
- 1.5 x 10⁹ events collected in 2001
- ~1.4 x 10⁹ events collected to date 2002

Bigger detector:

x 2 in V_{eff} for WIMP signal from the Earth

Simpler cuts achieve necessary rejection:

NN + 1 track quality cut

Bigger detector...

Higher sensitivity to horizontal tracks. Makes it suitable for searches for WIMP signals from the Sun (Sun at most at 22.5° below horizon at the Pole)

Main challenge: rejection of down-going misreconstructed atmospheric muons

Handle: Sun is a point source: background estimated from data with on-source/off-source method

Analysis of 2000-01 data for WIMP signal from the Sun under way

2002 data being filtered on line at the Pole

WIMPS FROM THE SUN: ICECUBE

ICECUBE:

Really big!

80 strings/5000 OMs

1 Km³ instrumented volume between 1450-2450 m depth

Excellent horizontal HE sensitivity (1 Km lever arm)

Competitive with direct searches for some combinations of SUSY parameter space

expected sensitivity of IceCube to WIMP-induced muon flux from the Sun

CONCLUSIONS

Large neutrino telescopes can be successfully used for indirect DM searches

Results from searches for a WIMP signal from the Earth with AMANDA-B10 published

Recent results from direct searches make the search using the Sun as source the most promising path for DM searches with neutrino telescopes

AMANDA-II/IceCube will explore the possible signal from the Sun